Interferometric SAR DEMs for Forest Change in Uganda 2000-2012

نویسندگان

  • Svein Solberg
  • Johannes May
  • Wiley Bogren
  • Johannes Breidenbach
  • Torfinn Torp
  • Belachew Gizachew
چکیده

Monitoring changes in forest height, biomass and carbon stock is important for understanding the drivers of forest change, clarifying the geography and magnitude of the fluxes of the global carbon budget and for providing input data to REDD+. The objective of this study was to investigate the feasibility of covering these monitoring needs using InSAR DEM changes over time and associated estimates of forest biomass change and corresponding net CO2 emissions. A wall-to-wall map of net forest change for Uganda with its tropical forests was derived from two Digital Elevation Model (DEM) datasets, namely the SRTM acquired in 2000 and TanDEM-X acquired around 2012 based on Interferometric SAR (InSAR) and based on the height of the phase center. Errors in the form of bias, as well as parallel lines and belts having a certain height shift in the SRTM DEM were removed, and the penetration difference between Xand C-band SAR into the forest canopy was corrected. On average, we estimated X-band InSAR height to decrease by 7 cm during the period 2000–2012, corresponding to an estimated annual CO2 emission of 5 Mt for the entirety of Uganda. The uncertainty of this estimate given as a 95% confidence interval was 2.9–7.1 Mt. The presented method has a number of issues that require further research, including the particular SRTM biases and artifact errors; the penetration difference between the Xand C-band; the final height adjustment; and the validity of a linear conversion from InSAR height change to AGB change. However, the results corresponded well to other datasets on forest change and AGB stocks, concerning both their geographical variation and their aggregated values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QUALITY ASSESSMENT OF INTERFEROMETRIC SAR DEMs

A new interferometric SAR (InSAR) procedure for DEM generation was employed to generate different DEMs from ERS SAR image pairs. The procedure was validated comparing the InSAR DEMs with a suited reference DEM. In the first part of the paper the principal features of the procedure are briefly summarised. The second part is focused on the quality assessment of the InSAR DEMs. They cover the same...

متن کامل

Generation of high precision DEMs of the Wadden Sea with airborne interferometric SAR

This paper describes how high-precision DEMs are obtained over the Wadden Sea using the AeS-1 airborne interferometric radar. The Wadden Sea is an intertidal zone along the coast which has height variations less than 5 m over 30 km and is free of vegetation. The resulting DEM has a grid spacing of 2.5 m and an absolute height accuracy of 5 cm rms, as verified by theodolite measurements. The pap...

متن کامل

Pageflex Server [document: D-Aalto-F871C572_00001]

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Jaan Praks Name of the doctoral dissertation Radar polarimetry and interferometry for remote sensing of boreal forest Publisher School of Electrical Engineering Unit Department of Radio Science and Engineering Series Aalto University publication series DOCTORAL DISSERTATIONS 153/2012 Field of research Space technology and remo...

متن کامل

Digital Elevation Model Generation from Interferometric Synthetic Aperture Radar Using Multi-scale Method

Digital Elevation Models (DEMs) can be generated using a variety of techniques and data sources including levelling, photogrammetry, SAR interferometry, radargrammetry, and laser scanning. These different-sourced DEMs are affected by different systematic vertical and horizontal errors, as well as random noise. Moreover, each DEM generally has different spatial resolution and coverage. In genera...

متن کامل

Improving Dems Using Sar Interferometry

Interferometric synthetic aperture radar (InSAR) processing relies on phase unwrapping to convert interferometric phase to topographic height. Phase unwrapping is a di cult non-linear process that is still the subject of on-going research. Rather than processing the complete phase image to extract a digital elevation model (DEM), we use existing coarse DEMs as an integral part of the InSAR algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018